Mandy
Ross says that that observing the global labour of love has tempered his cynicism.
You should know now:
We have seen how
the sample sizea (as a parameter of uncertainty)
are combined to measure the difference of the location of two groups this measure is compared to a null distribution through this comparison transformed in to a probability (p-value)
\[t = \frac{\bar{X}_{male} - \bar{X}_{female}}{s_{overall}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}\]
The p-value is the probability of the sample estimate (of the respective estimator - here our t) under the null. We do not know anything of probabilities of the null or of estimates under the alternative!
\(H_0\) is true | \(H_0\) is false | |
---|---|---|
\(H_0\) is not rejected | Correct decision | Type II error |
\(H_0\) is rejected | Type I error | Correct decision |
t.test()
set.seed(1)
x <- rnorm(12) ## create random numbers
t.test(x,mu=0) ## population mean 0
##
## One Sample t-test
##
## data: x
## t = 1.1478, df = 11, p-value = 0.2754
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.2464740 0.7837494
## sample estimates:
## mean of x
## 0.2686377
t.test(x,mu=1) ## population mean 1
##
## One Sample t-test
##
## data: x
## t = -3.125, df = 11, p-value = 0.009664
## alternative hypothesis: true mean is not equal to 1
## 95 percent confidence interval:
## -0.2464740 0.7837494
## sample estimates:
## mean of x
## 0.2686377
set.seed(1)
x <- rnorm(12) ## create random numbers
y <- rnorm(12) ## create random numbers
head(data.frame(x,y))
## x y
## 1 -0.6264538 -0.62124058
## 2 0.1836433 -2.21469989
## 3 -0.8356286 1.12493092
## 4 1.5952808 -0.04493361
## 5 0.3295078 -0.01619026
## 6 -0.8204684 0.94383621
t.test(x,y)
##
## Welch Two Sample t-test
##
## data: x and y
## t = 0.59393, df = 20.012, p-value = 0.5592
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5966988 1.0717822
## sample estimates:
## mean of x mean of y
## 0.26863768 0.03109602
g <- sample(c("A","B"),12,replace = T) ## create random group vector
head(data.frame(x,g))
## x g
## 1 -0.6264538 B
## 2 0.1836433 B
## 3 -0.8356286 A
## 4 1.5952808 B
## 5 0.3295078 A
## 6 -0.8204684 A
t.test(x~g)
##
## Welch Two Sample t-test
##
## data: x by g
## t = -0.66442, df = 6.3524, p-value = 0.5298
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.6136329 0.9171702
## sample estimates:
## mean in group A mean in group B
## 0.1235413 0.4717726
t.test(x,y,var.equal = T)
##
## Two Sample t-test
##
## data: x and y
## t = 0.59393, df = 22, p-value = 0.5586
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5918964 1.0669797
## sample estimates:
## mean of x mean of y
## 0.26863768 0.03109602
Use the ALLBUS data set:
Suppose you are rolling a fair die 600 times: what is the number of 6s you are expecting?
And how many 6s do we need to reject the NULL (a fair die) using a two-sided test??
qbinom(p = c(0.025,0.975),size = 600, prob = 1/6)
## [1] 82 118
What do we have to change for a one-sided test?
Suppose you are rolling a fair die 600 times: what is the number of 6s you are expecting?
And how many 6s do we need to reject the NULL (a fair die) using a one-sided test on a 95% confidence level??
qbinom(p = 0.95,size = 600, prob = 1/6)
## [1] 115
qbinom(p = 0.05,size = 600, prob = 1/6)
## [1] 85
So now let R rolling the dice!
sample(1:6,600,replace = T)
## [1] 2 3 4 6 2 6 6 4 4 1 2 2 5 3 5 3 5 6 3 5 6 2 4 1 2 3 1 3 6 3 3 4 3 2 5
## [36] 5 5 1 5 3 5 4 5 4 4 5 1 3 5 5 3 6 3 2 1 1 2 4 4 3 6 2 3 2 4 2 3 5 1 6
## [71] 3 6 3 3 3 6 6 3 5 6 3 5 3 2 5 2 5 1 2 1 2 1 4 6 5 5 3 3 5 4 4 3 2 6 4
## [106] 2 1 3 6 4 6 5 3 3 1 1 5 1 3 4 6 3 3 2 5 3 4 2 2 4 4 1 1 4 6 4 4 4 6 4
## [141] 5 4 2 2 5 3 2 5 1 6 4 4 2 3 4 2 4 1 2 2 2 6 3 5 6 3 1 3 5 3 4 6 6 3 3
## [176] 6 4 5 4 6 2 2 6 4 6 2 5 5 6 4 5 3 1 6 2 4 1 6 2 5 2 2 4 2 2 4 4 1 2 5
## [211] 6 1 5 6 5 2 4 6 6 3 2 1 2 4 6 4 2 1 3 6 3 1 3 4 3 5 5 4 3 3 2 4 6 1 3
## [246] 2 3 1 3 6 5 6 3 4 3 1 2 3 3 6 4 2 2 5 5 1 1 5 4 2 1 1 3 2 2 2 2 2 3 5
## [281] 1 4 6 3 1 1 2 1 1 2 2 1 6 2 4 5 1 1 1 6 5 1 3 3 3 6 2 5 1 3 1 2 6 5 2
## [316] 3 1 3 6 4 4 2 3 6 6 6 5 5 2 5 6 2 3 5 1 3 3 1 4 6 6 2 4 3 5 2 3 2 3 5
## [351] 3 1 5 3 6 2 6 1 6 3 1 2 6 2 4 6 1 5 5 3 3 4 6 2 2 3 3 6 2 3 3 4 4 6 2
## [386] 2 5 5 1 6 1 1 6 4 1 3 4 2 3 1 4 2 6 6 6 5 3 5 1 6 6 3 5 5 5 3 3 2 5 5
## [421] 3 4 4 1 3 3 1 6 6 6 6 1 3 4 1 5 5 1 3 6 1 2 4 4 2 3 3 6 1 1 6 3 3 2 1
## [456] 4 4 6 4 1 1 3 1 3 2 6 5 1 3 5 3 6 5 3 1 2 6 3 3 5 5 1 6 6 4 4 2 1 6 1
## [491] 1 6 2 1 3 3 3 4 6 1 4 5 4 4 3 6 3 6 5 4 6 3 1 5 5 2 4 4 3 4 5 5 3 1 3
## [526] 6 5 5 6 6 4 1 3 2 1 1 3 3 2 4 3 6 4 2 2 1 6 3 4 5 6 4 1 6 5 3 1 1 5 5
## [561] 4 1 3 5 6 5 2 4 2 6 1 3 2 1 5 4 5 3 6 5 3 6 4 1 4 3 1 4 6 5 4 2 5 4 5
## [596] 4 3 3 3 3
Count the 6s!
sample(1:6,600,replace = T)==6
## [1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [56] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
## [78] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [89] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
## [111] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [122] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [144] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [155] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
## [166] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
## [177] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
## [188] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [199] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [210] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
## [221] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
## [232] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [243] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
## [254] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [276] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [287] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [298] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [309] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [320] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## [331] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [342] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [353] FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
## [364] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [375] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [386] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
## [397] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
## [408] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [419] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [430] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [441] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
## [452] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [463] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [474] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [485] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
## [496] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [507] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [518] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [529] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [540] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [551] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [562] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [573] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [584] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [595] FALSE FALSE FALSE FALSE FALSE FALSE
Count the 6s!
sum(sample(1:6,600,replace = T)==6)
## [1] 100
Now use the following code to replicate the experiment (rolling one fair dice 600 times) 1000 times. The number of 6s are stored in the vector x
.
How many statistically significant results do you expect for a one-sided alternative? How many for a two-sided alternative?
How many statistically significant results did you get? (you can use table()
in combination with a logical function)
Visualize the result using ggplot2 and geom_histogram()
(look at the help of geom_histogram
)!
x <- replicate(1000, sum(sample(1:6,600,replace = T)==6))
df <- data.frame(repid = 1:1000, n.6s = x)
head(df,10)
## repid n.6s
## 1 1 98
## 2 2 110
## 3 3 92
## 4 4 103
## 5 5 115
## 6 6 105
## 7 7 108
## 8 8 107
## 9 9 105
## 10 10 118